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Elastohydrodynamic rebound of spheres
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Experiments were performed to measure the rebound velocities of small plastic and
metal spheres dropped from various heights onto a smooth quartz surface coated with
a thin layer of viscous fluid. The spheres stick without rebounding for low impact
velocities, due to viscous dissipation in the thin fluid layer. Above a critical impact
velocity, however, the lubrication forces in the thin layer cause elastic deformation
and rebound of the spheres. The apparent coefficient of restitution increases with the
ratio of the Stokes number to its critical value for rebound, where the Stokes number
is a dimensionless ratio of the inertia of the sphere to viscous forces in the fluid. The
critical Stokes number required for rebound decreases weakly with increasing values
of a dimensionless elasticity parameter which is a ratio of the viscous forces which
cause deformation to the elastic forces which resist deformation. The experimental
results show good agreement with an approximate model based on lubrication theory
for undeformed spheres and scaling relations for elastic deformation.

1. Introduction
Collisions of small particles with other particles or surfaces play key roles in

industrial and natural processes such as filtration, agglomeration, granular flow, sand
blasting, pollen capture, and clean-room applications. The surfaces are wet in many
cases, which can cause the particles to stick or have reduced kinetic energy due to
viscous losses. The classical Hertzian analysis (cf. Love 1927) for dry surfaces assumes
perfectly elastic collisions, so that the coefficient of restitution (defined as the ratio
of the magnitudes of the rebound and impact velocities) is unity. In practice, the dry
coefficient of restitution, edry , is reduced by plastic deformation (Johnson 1985), elastic
waves (Hunter 1957), vibrations (Hunter 1957; Reed 1985; Sondergaard, Chaney &
Brennen 1990), viscoelasticity of the solids (Falcon et al. 1998; Ramirez et al. 1999),
and adhesive forces (Dahneke 1971).

When the surfaces are wet, the coefficient of restitution is further reduced by
viscous losses in the thin fluid layer between the colliding surfaces. Davis, Serayssol
& Hinch (1986) first analysed this problem, which they called an elastohydrodynamic
collision, by numerically solving the coupled lubrication equation for the fluid flow and
pressure and solid-elasticity equation for the Hertzian deformation of the surfaces.
They showed that the collision and rebound process is governed by two dimensionless
parameters:
Stokes number

St = mvo/(6πµa
2), (1)
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elasticity parameter

ε = 4θµvoa
3/2/x5/2

o , (2)

where m = 4πa3ρs/3 is the mass of the ball, a is its radius, ρs is its density, µ is
the fluid viscosity, vo is the impact velocity when starting at a separation xo between
the surfaces, θ = (1 − ν2

1 )/(πE1) + (1 − ν2
2 )/(πE2), and νi and Ei are Poisson’s ratio

and the Young’s modulus of elasticity for the ball (i = 1) and plane (i = 2). The
same analysis applies for the collision of two spheres, with a and m then equal to the
reduced radius and mass, respectively (Davis et al. 1986).

Davis et al. (1986) showed that no rebound occurred when the Stokes number is
less than a critical value (St < Stc), due to viscous dissipation of the initial kinetic
energy of the sphere. The value of the critical Stokes number for rebound is predicted
to depend weakly on the elasticity parameter, increasing from Stc ≈ 1 at ε = 10−2 to
Stc ≈ 8 at ε = 10−8. Rebound is predicted for St > Stc, with ewet = vr/vo increasing
with increasing St, where vr is the maximum velocity achieved during rebound.
An approximate analytical model which provides a closed-form solution in good
agreement with the numerical solution has been presented by Lian, Adams & Thorten
(1996).

Elastohydrodynamic rebound was verified by Barnocky & Davis (1988), who
dropped small steel and acrylic balls onto a quartz surface covered with a thin
viscous layer. They found that the critical drop height for rebound increased with
increasing fluid thickness and viscosity, and with decreasing ball size and density. The
experimental results for the critical Stokes number are in good agreement with the
theory of Davis et al. (1986), but the coefficient of restitution for St > Stc was not
determined. Lundberg & Shen (1992) subsequently examined the influence of a drop
of viscous oil on the collision between a large roller and a large ball, finding that the
coefficient of restitution generally decreased with increasing viscosity of the oil. More
recently, several groups have investigated elastohydrodynamic collisions and rebound
for total immersion of solid spheres in a viscous liquid over broad ranges of the Stokes
number (Zhang et al. 1999; Zenit & Hunt 1999; Gondret et al. 1999; Gondret, Lance
& Petit 2002; Joseph et al. 2001). No rebound of spheres from surfaces was observed
for Stokes numbers below a critical value of Stc ≈ 10. Above this critical value, the
coefficient of restitution was observed to increase rapidly and then gradually with
increasing Stokes number, becoming close to the value for dry collisions at St ≈ 500.
Both Gondret et al. (2002) and Joseph et al. (2001) fit all their data on a single curve
of ewet/edry versus St, independent of elastic properties, with moderate scatter on a
semi-log plot.

In the current paper, we describe experiments on elastohydrodynamic collisions
and rebound for small metal and plastic balls impacting a hard surface coated with
a thin layer of viscous fluid. The purpose is to determine the apparent coefficient of
restitution and how it depends on fluid and solid properties. Thus, the earlier work
of Barnocky & Davis (1988) is extended to provide quantitative data for non-zero
rebound velocities when St > Stc. A simple theory accounting for particle inertia,
viscous lubrication, elastic deformation, and losses within the solids is used to analyse
the data.

2. Materials and methods
Small solid balls (Small Parts, Inc.) of Nylon 66 (ρs = 1.14 g cm−3, E1 = 2.84 ×

1010 g cm −1 s−2, ν1 = 0.35) or stainless steel 302 (ρs = 7.96 g cm−3, E1 = 2.00 ×
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1011 g cm −1 s−2, ν1 = 0.28) were dropped one at a time from various heights onto
a quartz disk (E2 = 7.26× 1011 g cm−1 s−2, ν2 = 0.17) which was dry or covered with
a thin layer of a Newtonian oil. The balls have radii of a = 0.32, 0.48 and 0.64 cm.
Scanning electron micrographs (SEMs) revealed small (1–5 µm) widely separated pits
on the surfaces of the steel balls (Barnocky & Davis 1988). The SEMs of the nylon
balls revealed bumps and filaments typically 2–20 µm high on their surfaces (Zeng,
Kerns & Davis 1996; Joseph et al. 2001). The quartz disk used for most experiments
is 0.64 cm thick and has a diameter of 5.08 cm; it is optically smooth. Measurements
using the method of Smart & Leighton (1989) gave hydrodynamic roughnesses of ap-
proximately 4 µm for the steel balls and 20 µm for the nylon balls. In this method, the
balls of 0.32 cm diameter were allowed to settle in a viscous fluid onto the quartz disk,
which was subsequently inverted, and the times required for the ball to fall one and
two radii from the disk were recorded to determine the initial separation (assumed
equal to the hydrodynamic roughness). The hydrodynamic roughnesses are larger
than the root-mean-square roughnesses determined by profilometry or microscopy for
similar materials (e.g. Joseph et al. 2001). This result is expected because the balls
contact the plane, prior to its inversion, on the largest roughness elements present
in sufficient density to support the balls. Also, calculation of the suction lubrication
pressure as the balls fall away from the inverted plane indicates that cavitation may
occur for separations less than 0.1µm for the 0.32 cm nylon ball and less than 3.5µm
for the 0.32 cm steel ball. Thus, the measured hydrodynamic roughness of 4 µm for the
steel ball may have been due to cavitation, with the actual roughness being smaller
than this value.

The two fluids used are silicon-based oils (Brookfield Engineering Laboratories,
Inc.) with viscosities of µ = 9.9 and 125 g cm−1 s−1 and densities of ρ = 0.972 and
0.973 g cm−3, respectively, at 23◦C. The oil was applied to the top surface of the
quartz disk with a small brush and allowed to stand to obtain a constant thickness
which was calculated using the difference in mass between the wet and dry disk.
For most experiments, an oil thickness of δ = 80, 150, or 250 µm was used. The
experiments were performed at room temperature (23 ± 2 ◦C), and temperature-
dependent viscosity corrections were applied when calculating the Stokes number and
elasticity parameter.

The balls were dropped by first placing them in a hole with diameter slightly
larger than the ball drilled in an aluminium plate of 0.64 cm thickness. The balls
were held in place manually with a finger and then released by rapidly moving the
finger straight down. The height ho from which the ball was dropped onto the quartz
disk was varied between 4 and 90 cm. An impact velocity of vo =

√
2gho is obtained

by neglecting air resistance, where g = 980 cm s−2 is the gravitational acceleration.
Each experiment was photographed using an Olympus OM–1 35 mm camera and a
General Radio Company Type 1531-A stroboscope (typically operated at about 100
flashes per second). Measured impact and rebound velocities were determined from
the distance between successive ball images on each picture, with a correction applied
for gravitational acceleration/deceleration. Most of the measured impact velocities
are within ±5 cm s−1 of the theoretical value of vo =

√
2gho. For sufficiently small

rebound velocities, the maximum rebound height, hr , is evident on the photographs,
and the measured rebound velocities from the successive ball images in these cases
are generally within ±5 cm s−1 of the expected value vr =

√
2ghr . The uncertainty in

measuring ball velocities from the photographs is also estimated to be ±5 cm s−1.
The quartz disk was mounted in an aluminium holder and inclined 3–4◦ from
horizontal so that the rebound images could be easily distinguished from the impact
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(a) (b) (c)

Figure 1. Strobed photographs of a nylon sphere of radius 0.32 cm dropped onto (a) a dry quartz
surface from a height of 20 cm (4000 flashes per minute), (b) a quartz surface overlaid with a thin
layer of fluid with 9.9 g cm−1 s−1 viscosity and 80 µm thickness from a height of 20 cm (8000 flashes
per minute), and (c) the quartz surface with the same fluid layer from a height of 30 cm (8000
flashes per minute). The target disk is visible (but not fully in focus) at the bottom of each panel,
and the light area on the surface is a reflection of the strobe light.

images. Additional experiments showed that the critical impact velocity for rebound
is insensitive to the angle of inclination of the quartz disk up to 20◦ from horizontal,
although systematic measurements of rebound velocities for different angles have not
yet been made.

3. Experimental results
Figure 1 shows typical strobotic photographs for the nylon ball with a = 0.32 cm

dropped onto the quartz surface with and without a thin layer of the 9.9 P fluid
with δ = 80 µm. For the dry surface, the sphere rebounds with a velocity only slightly
lower than the impact velocity. In contrast, no rebound is observed when the ball
is dropped from ho = 20 cm onto the wetted surface. For ho = 30 cm, rebound from
the wet surface is observed, but the rebound velocity is much less than the impact
velocity, due to viscous losses in the oil layer. Small ink dots were placed on the
ball surface for some experiments, and these show a small rotation of approximately
2◦ between successive images on the photographs as the ball dropped, and a larger
rotation of typically 5–10◦ between successive images during rebound.

Figure 2 shows that the rebound velocity is proportional to the impact velocity for
dry collisions, over the range studied. The slopes of the lines give dry coefficients of
restitution at the 90% confidence level of edry = 0.88±0.04, 0.86±0.02 and 0.84±0.02
for nylon spheres of radius 0.32, 0.48 and 0.64 cm, respectively, and edry = 0.77± 0.02,
0.57± 0.05 and 0.35± 0.05, respectively, for steel spheres of the same sizes. The small
losses for nylon are probably due to a combination of elastic waves, viscoelastic
behaviour, and vibrations of the thin quartz disk, whereas vibrations dominate the
larger losses with steel balls. We repeated the dry experiments with a quartz disk
of 1.27 cm thickness and achieved higher values of edry = 0.89 ± 0.04, 0.94 ± 0.03
and 0.90 ± 0.02, respectively, for nylon spheres of radius 0.32, 0.44 and 0.64 cm,
and edry = 0.93 ± 0.02, 0.79 ± 0.05 and 0.67 ± 0.07, respectively, for steel spheres of
radius 0.32, 0.48 and 0.64 cm. The increased dry coefficients of restitution indicate
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Figure 2. Linear increase of rebound velocity with impact velocity for collisions of nylon and steel
spheres with a dry quartz disk of 0.64 cm thickness. The error bars represent plus and minus one
standard deviation for typically 3–5 repeats for selected conditions.

less vibrational losses, consistent with previous findings that the dry coefficient of
restitution increases with plate thickness until the plate thickness is approximately
four times the ball diameter (Sondergaard et al. 1990). No statistically significant
variation in the dry coefficients of restitution with impact location (e.g. centre versus
edge of target) was observed. Previously, Sondergaard et al. (1990) showed that the
apparent coefficient of restitution decreased with impact distance from the charged
edge of a plate, due to increased vibrational losses, but the difference is greater than
our experimental uncertainty only for steel balls greater than 0.64 cm in diameter.

Figure 3 for wet collisions shows a different behaviour in that no rebound is
observed until a critical impact velocity is reached, and then the rebound velocity
increases rapidly at first and then almost linearly with impact velocity above the
critical value. The critical impact velocity is higher for greater fluid thickness or
viscosity (figure 3a), due to increased viscous dissipation. On the other hand, the
critical impact velocity is lower for a larger or more dense ball (figure 3b), due to
greater inertia which allows the ball to more easily penetrate the viscous layer and
achieve elastic deformation.

The experimental results are plotted in dimensionless form as the coefficient of
restitution versus Stokes number for the nylon balls of radii 0.32, 0.48 and 0.64 cm,
respectively, in figures 4(a), 4(b) and 4(c). As observed previously (Gondret et al.
2002; Joseph et al. 2001) for fully immersed collisions, the coefficient of restitution
is zero below a critical Stokes number and then increases rapidly with increasing
Stokes number above the critical number before levelling out at large Stokes num-
bers. However, the critical Stokes number is much less than the value of Stc ≈ 10
observed for fully immersed collisions (Gondret et al. 2002; Joseph et al. 2001), and it
is observed to increase with increased fluid-layer thickness and decrease with increased
fluid viscosity. These findings are in at least qualitative agreement with the theory of
Davis et al. (1986), as the dimensionless elasticity parameter defined by (2) increases
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Figure 3. Increase in rebound velocity with impact velocity above a critical value for spheres
dropped on a quartz disk overlaid with a thin viscous layer: (a) nylon spheres of 0.48 cm radius;
(b) fluid of 9.9 g cm−1 s−1 viscosity and 80 µm thickness.

with increasing fluid viscosity and decreases with increasing layer thickness. A thicker
layer causes more viscous dissipation prior to significant elastic deformation, whereas
a more viscous fluid exerts a greater lubrication force and causes more elastic defor-
mation. On the other hand, the critical Stokes number appears to be independent of
or increase weakly with the ball size, whereas the elasticity parameter increases with
ball size and so a larger ball might be expected to bounce more easily (lower Stc).

The coefficient of restitution versus the Stokes number for the steel balls of radii
0.32, 0.48 and 0.64 cm is shown in figures 5(a), 5(b) and 5(c), respectively. The greater
density of steel compared to nylon yields larger Stokes numbers for the same ball
sizes, drop heights, and fluid viscosities. Moreover, the critical Stokes numbers for
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Figure 4. Coefficient of restitution versus Stokes number for nylon balls of radius (a) 0.32 cm,
(b) 0.48 cm, and (c) 0.64 cm.
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rebound are higher for the heavier steel balls. The dimensionless elasticity parameter
is much smaller for a steel ball (ε ≈ 10−6–10−4) than for a nylon ball (ε ≈ 10−3–10−2),
because of the larger Young’s modulus for steel and because the greater density of
steel requires a smaller impact velocity at fixed Stokes number. The smaller elasticity
parameter implies a larger critical Stokes number (Davis et al. 1986), and the stiffer
and heavier steel balls penetrate further into the oil layer before elastic deformation
is significant, causing greater viscous losses and reducing the apparent coefficient of
restitution at fixed Stokes numbers. Unlike for the nylon spheres, the coefficient of
restitution at large Stokes numbers decreases significantly with increasing ball size;
this finding is consistent with the dry coefficient of restitution, which decreases with
increasing mass of the steel balls due to greater vibrations of the thin quartz disk
(Sondergaard et al. 1990) Indeed, figure 5(a) shows that using the quartz disk of
thickness 1.27 cm with the steel sphere of radius 0.32 cm results in wet coefficients
of restitution which are 20–25% higher than those for the thinner disk, which is
about the same as the percent increase observed for the dry coefficient of restitution.
There is also considerable scatter in the data, which may be due to local variations
in coating thickness and surface roughness, as well as the uncertainty in the velocity
measurements.

4. Comparison with theory
In this section, an approximate model based on lubrication theory for undeformed

spheres and scaling arguments for the elastic deformation and rebound is presented
and compared with experimental results. Following the asymptotic solution of Davis
et al. (1986) for small deformations, the viscous lubrication force resisting the near-
contact motion of a sphere toward a plane (or another sphere) is

FL = 6πµa2v/x, (3)

where v is the instantaneous relative velocity of the sphere toward the plane and
x is the instantaneous distance between the nose of the undeformed sphere and
plane. Equation (3) requires that x� a and ReL = ρvx/µ� 1; both of these con-
ditions are easily met in the experiments of this paper. It also requires that the
fluid motion is quasi-steady (so that the transient term in the fluid momentum equa-
tion can be neglected); this constraint implies ρx/(ρsa)� 1, which is also met in
the experiments. Finally, the effects of changes in fluid viscosity and density due to
the lubrication pressure (Barnocky & Davis 1989) are neglected. Then, combining
the kinetic equations dx/dt = −v and m dv/dt = −FL, and integrating subject to the
initial condition v = vo when x = xo, yields (Davis et al. 1986)

v/vo = 1− ln(xo/x)/St, (4)

showing that the sphere slows down due to viscous forces as it approaches the plane.
The initial separation is chosen as xo = 2δ/3, as recommended by Barnocky & Davis
(1986) to allow for the sphere to penetrate a sufficient distance into the viscous layer
for lubrication forces to become significant.

In this approximate model, the sphere is assumed to stop and then rebound when
it reaches a separation x = xr (to be determined). To account for energy dissipation
in the solid, it is assumed that the magnitude of the rebound velocity is reduced by a
factor edry (Joseph et al. 2001) and therefore equal to

vr/vo ≡ ewet = edry(1− Stc/St), St > Stc, (5)
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Figure 5. Coefficient of restitution versus Stokes number for steel balls of radius (a) 0.32 cm,
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where

Stc = ln(xo/xr) (6)

is the critical Stokes number required for rebound.
In principle, the rebound velocity of the sphere is further reduced by viscous

lubrication forces as it returns to the initial separation xo. However, these tensile
forces during rebound require a suction pressure to draw the fluid back into the gap
between the receding surfaces, and the magnitude of the surface pressure is several
hundred atmospheres, or larger, for the conditions of our experiments. Since the fluid
will cavitate at these high tensile stresses, the resistance to motion during rebound is
small relative to the resistance during approach (Barnocky & Davis 1988), and so it
is neglected.

When the colliding surfaces have sufficiently larger microscopic roughness elements,
then physical contact will occur when the distance between the nominal surfaces
decreases to the height of the roughness elements. In this case, xr = xb, where xb is
the effective height of the roughness bumps, as described previously (Davis 1987;
Barnocky & Davis 1988; Joseph et al. 2001). For relatively smooth spheres, on
the other hand, we set xr equal to an elasticity length scale, at which substantial
elastic deformation of the sphere and plane occur due to the applied load from the
lubrication force. From the theory of linear elasticity (e.g. Timoshenko & Goodier
1970), the deformation of the sphere and plane at the axis of symmetry due to the
distributed lubrication force FL scales as

δh ≈ θFL

rh
, (7)

where rh is a characteristic distance between the axis of symmetry and the location
of the applied load. Since the surface of the sphere near the axis of symmetry may be
approximated by h = x+r2/2a, where r is the radial coordinate, a characteristic radial

distance over which the lubrication force is distributed is rh =
√

2ax. Substituting this
result and (3) into (7) yields

δh ≈ θ

(2ax)1/2

6πµa2v

x
. (8)

The deformation at the axis of symmetry is considered to be substantial when it is
comparable to the distance separating the undeformed surfaces, or δh = x = xr . The
relative velocity in (8) could be provided by (4), but we instead make the simpler
choice of v = vo/2 in (8), so that the sphere maintains a significant fraction of its
velocity by the time deformation becomes important, yielding

xr = (3πθµa3/2vo/
√

2)2/5. (9)

This length scale is almost the same as the deformation length scale x1 = (4θµa3/2vo)
2/5

identified by Davis et al. (1986), with xr = 1.23 x1. Then, combining (6) and (9) yields
an expression for the critical Stokes number:

Stc =
2

5
ln

( √
2x

5/2
o

3πθµvoa3/2

)
=

2

5
ln

(
4
√

2

3πε

)
= 0.40 ln(1/ε)− 0.20, (10)

where ε is the dimensionless elasticity parameter given by (2).
Equations (5) and (10) combined give the predicted dependence of the wet coefficient

of restitution on the dry coefficient of restitution, the Stokes number, and the elasticity
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Figure 6. Critical Stokes number as a function of the elasticity parameter for nylon (open symbols)
and steel (closed symbols) balls. The solid line is from (10) and the dashed line is from (11).

parameter. The effects of capillary forces as the ball enters the thin fluid layer are
neglected in the theory, as justified previously (Barnocky & Davis 1988). It may be
possible to apply (10) to the fully immersed experiments of Joseph et al. (2001) and
Gondret et al. (1999, 2002), using the terminal velocity for vo and choosing xo to be
sufficiently small that lubrication theory applies but not so small that the sphere has
significantly slowed or deformed.

In figure 6, the critical Stokes number required for rebound is plotted versus (1/ε).
As expected, the critical Stokes number increases as ε decreases due to the reduction
in energy conversion to elastic deformation. However, the experimental data fall
below the prediction of (10) for the more viscous fluid, as was observed previously
(Barnocky & Davis 1988). This case corresponds to Stc < 1, and the large viscous
forces cause the spheres to deform and bounce without penetrating very far into
the fluid layer, and without meeting the condition ε� 1 for the elastohydrodynamic
theory of Davis et al. (1985) to apply. In contrast, the experimental values of Stc
exceed the theoretical prediction for large values of (1/ε); as discussed previously
(Barnocky & Davis 1988), this finding is probably a result of additional viscous
dissipation which occurs during penetration and flattening of the nose of the sphere
for collisions with large inertia. As an alternative to (10), the dashed line in figure 6
is the fit provided by Lian et al. (1996) to the full numerical solution by Davis et al.
(1986) for the elastohydrodynamic rebound process:

Stc = 0.52 ln(1/ε)− 1.67. (11)

However, (11) does not generally fit the data better than does (10).
Equation (5) represents a ‘master curve’ for ewet/edry versus St/Stc. In figure 7,

we compare the experimental data for the fluid of 9.9 g cm−1 s viscosity with both
nylon and steel balls to this prediction, using (10) to determine the critical Stokes
number for each experiment. Although there is considerable scatter, the data appear
to collapse reasonably well on the single master curve, with no adjustable parameters.
A better fit of (5) to the data would be achieved if Stc was chosen as an adjustable
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and steel (closed symbols) balls impacting a quartz surface overlaid with an 80–250µm layer of
fluid with 9.9 g cm−1 s−1 viscosity. The theoretical curve is from (5).

parameter for each set of experiments. Also, the typical elasticity length scale from
(9) is about 3–9 µm for the steel balls and 10–30 µm for the nylon balls. Since these
values are comparable to the measured hydrodynamic roughnesses, the latter may
have contributed to the scatter in the data. The few values of ewet/edry > 1 for the
steel balls with radii of 0.48 and 0.64 cm are probably due to the large uncertainties
and relatively small values of edry for these balls.

5. Concluding remarks
The coefficient of restitution (ewet), defined as the rebound velocity divided by

the impact velocity, was measured for steel and nylon balls dropped onto a nearly
horizontal quartz surface overlaid with a thin layer of viscous fluid. Below a critical
value of the Stokes number, which provides a measure of the inertia of the ball
relative to viscous forces, both theory and experiment show that no bouncing occurs,
because the kinetic energy of the ball is lost to viscous dissipation without enough
elastic deformation for the ball to bounce. Above the critical Stokes number, the
large lubrication pressure required to squeeze the fluid out of the narrow gap results
in enough elastic deformation to cause rebound after the sphere is brought to rest.
The coefficient of restitution then increases with increasing Stokes number (St) and
asymptotes at large Stokes numbers to the value for dry collisions (edry). The critical
Stokes number (Stc) is shown to increase weakly with decreasing values of an elasticity
parameter (ε), which is a dimensionless ratio of viscous forces to elastic forces, so
that less rebound occurs when the solids are stiff or the fluid layer is thick.

Although there is considerable scatter, the data collapse reasonably well on a
single curve, ewet/edry = 1− Stc/St for St > Stc, developed from lubrication theory
together with scaling arguments to estimate the critical Stokes number as a function
of the elasticity parameter. This simple relationship may find use in predicting particle
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capture probabilities in filtration and agglomeration processes and in predicting the
coefficient of restitution as input for dynamic simulations of wet granular flow.

This work was supported by NASA grant NCC3-796 and by NSF grant CTS-
9712604.
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